Multi-temporal monitoring of a regional riparian buffer network (>12,000 km) with LiDAR and photogrammetric point clouds.
نویسندگان
چکیده
Riparian buffers are of major concern for land and water resource managers despite their relatively low spatial coverage. In Europe, this concern has been acknowledged by different environmental directives which recommend multi-scale monitoring (from local to regional scales). Remote sensing methods could be a cost-effective alternative to field-based monitoring, to build replicable "wall-to-wall" monitoring strategies of large river networks and associated riparian buffers. The main goal of our study is to extract and analyze various parameters of the riparian buffers of up to 12,000 km of river in southern Belgium (Wallonia) from three-dimensional (3D) point clouds based on LiDAR and photogrammetric surveys to i) map riparian buffers parameters on different scales, ii) interpret the regional patterns of the riparian buffers and iii) propose new riparian buffer management indicators. We propose different strategies to synthesize and visualize relevant information at different spatial scales ranging from local (<10 km) to regional scale (>12,000 km). Our results showed that the selected parameters had a clear regional pattern. The reaches of Ardenne ecoregion have channels with the highest flow widths and shallowest depths. In contrast, the reaches of the Loam ecoregion have the narrowest and deepest flow channels. Regional variability in channel width and depth is used to locate management units potentially affected by human impact. Riparian forest of the Loam ecoregion is characterized by the lowest longitudinal continuity and mean tree height, underlining significant human disturbance. As the availability of 3D point clouds at the regional scale is constantly growing, our study proposes reproducible methods which can be integrated into regional monitoring by land managers. With LiDAR still being relatively expensive to acquire, the use of photogrammetric point clouds combined with LiDAR data is a cost-effective means to update the characterization of the riparian forest conditions.
منابع مشابه
Point Clouds: Lidar versus 3D Vision
Novel automated photogrammetry is based on four innovations. First is the cost-free increase of overlap between images when sensing digitally. Second is an improved radiometry. Third is multi-view matching. Fourth is the Graphics Processing Unit (GPU), making complex algorithms for image matching very practical. These innovations lead to improved automation of the photogrammetric workflow so th...
متن کاملPreface: Multiray Photogrammetry Meets Advanced LiDAR
2009 represented a further milestone in the Photogrammetric Week Series: The 100th Anniversary – conventionally numbered as the 52 Photogrammetric Week (see footnote) – was celebrated. It documented once more the visions, missions and applications of a geospatial science, which is continuously developing cutting-edge hardware for improved data collection, powerful software packages for workflow...
متن کاملMulti-image Matching: an “old and New” Photogrammetric Answer to Lidar Techniques
Over the last decade, LIDAR techniques have replaced traditional photogrammetric techniques in many applications because of their speed in point cloud generation. However, these laser scanning techniques have non-negligible limits and, for this reason, many researchers have decided to focus on improving the performances of matching technique in order to generate dense point clouds from images.T...
متن کاملUrban Landscape Classification System Using Airborne LiDAR
The classification of urban landscape in aerial LiDAR point clouds can potentially improve the quality of largescale 3D urban models, as well as increase the breadth of objects that can be detected and recognized in urban environments. In this paper, we introduce a multi-category classification system for aerial LiDAR point clouds. We propose the use of a cascade of binary classifiers for label...
متن کاملFusion of NASA Airborne Snow Observatory (ASO) Lidar Time Series over Mountain Forest Landscapes
Mountain ecosystems are among the most fragile environments on Earth. The availability of timely updated information on forest 3D structure would improve our understanding of the dynamic and impact of recent disturbance and regeneration events including fire, insect damage, and drought. Airborne lidar is a critical tool for monitoring forest change at high resolution but it has been little used...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental management
دوره 202 Pt 2 شماره
صفحات -
تاریخ انتشار 2017